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pertaining to sight and vision, has been
somewhat generalized. An analogous pair of
definitions for optical would be that the
dimensions of optical components are enor-
mous compared with A, or A is of the order
of a micron. Putting all these statements
together, we have the comparative meaning

L ~X\ A< L<I03%\ L>10%

Microwave  Nanowave Optical

and the definite meaning as shown in Fig. 1.
It should be noted that nanowave, in its
comparative meaning, is synonymous with
quasioptic (Latin prefix, Greek stem!).

I hope that the new word nanowave will
be given some serious consideration for use
in this growing new technology where the
traditional fields of optics and radio engineer-
ing meet and overlap. As an example of how
it might be used, consider the title of the
recent conference in Colorado entitled
Boulder Mdlimeter Wave and Far Infraved
Conference. It might have been called the
Boulder Nanowave Conference. The con-
ference announcement proclaims a special
issue of the TEEE Proceedings to be titled
“Millimeter Waves and Beyond.” An alter-
nate title could be “Infrared and Below,”
but why not “Nanowaves—a new Frontier”?

R. W. ZIMMERER
2300 Kenwood Dr.
Boulder, Colo.

Transverse Resonance Solution of
Uniform Trapezoidal Waveguides

Waveguides of nonconventional cross
sections are of interest, and several approxi-
mate techniques are being developed.
Yashkin [1]-[3] approximated the compli-
cated cross section of waveguides by a cluster
of rectangles. For example, the lateral sides
of a uniform isosceles trapezoidal waveguide
were approximated [1] by three steps, as
shown in Fig. 1, thus forming five rectangu-
lar guides. The solution of the wave equation
was sought by matching the five separate
solutions at the boundaries of the adjacent
rectangular guides. This led to a system of
transcendental equations, which is often
laborious to solve. Yashkin’s theoretical cal-
culations are verified experimentally as
shown in Table I.

The transverse resonance method [4] can
easily be applied to the uniform trapezoidal
waveguide with the three-step deformation
in each lateral side. The cross-sectional view
can be considered as cascaded transmission
lines with short-circuited ends, thus forming
a resonant cavity with propagation in the x
direction. With this approximation, one
transcendental equation is easily obtained
and solved for the lowest cutoff wave
number.

For simplicity, Yashkin let

s=a+24 d=2A a=nx
and defined # as the ratio of the cutoff wave
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Fig. 1. Trapezoidal guide approximated by step Fig. 2. Transmission line equivalent of one-half
deformations m lateral sides. the symmetrical trapezoidal waveguide.
TABLE I
17 CALCULATED FOR b/s =0.25; WiTH AND WITHOUT THE “DISCONTINUITY” ADMITTANCE
Yashkin [1] Transverse Resonance Method
-4
theo. 3 steps exp. 2 steps 3 steps 2 steps w/B | 3 steps w/B’s

0° 1.00 1 00 1.000 1.000 1.000 1.000
10° 1.04 1.04 1 046 1.046 1.046 1.045
20° 1.10 1.10 1.100 1.099 1.099 1.099
30° 1.17 1.17 1.167 1.169 1 164 1.164
40° 1.26 1.27 1.255 1.254 1.249 1.246
50° 1.33 1.33 1.389 1.383 1.360 1.356
60° 1.36 1.37 1.547 1.529 1.451 1.448

number of a rectangular waveguide to that
of the uniform isosceles trapezoidal wave-
guide. That is,

2s 2A
ﬂ—m—(l"l”—’;— k 1)

where % is the cutoff wave number of the
trapezoidal guide.

For the guide shown in Fig. 1, the trans-
verse resonance method dictates that the in-
put admittance looking to the right or to the
left from the center line is zero for TE
(transverse electric) mode of propagation.
A “discontinuity” admittance exists at every
step as discussed by Whinnery and Jamieson
[5]. When only a two-step approximation is
considered, the transverse resonance method
with the “discontinuity ” admittance included
in the transmission line equations yields the
following simple transcendental equation,

tan L = (by/b;) cot kd — B/ Vs,  (2)

The term b,/b; results from the fact that it is
equal to Yg/Ye as Marcuvitz [6] pointed
out. Using the results in Fig. 5.26.3 in
Marcuvitz [6], and b;/b1=2, (2) becomes

tan kL = 2 cot kd — 0.8(bs/s)(1 + 2A/x)E. (3)

Equation (3) was solved for % using dif-
ferent values of the angle ¢, and the factor 4
was calculated by (1). The solutions are
shown in Table I along with Yashkin’s
results.

It is evident, therefore, that the two-step
approximation for all practical uniform
isosceles trapezoidal waveguides is sufficient
to yield good results. Also, it is noted that
only when the lateral walls are slanted con-
siderably, i.e., large ¢, is it necessary that
the “discontinuity” admittances be taken
into account. For ¢=60° the error in 7 is
about 6 percent. This discrepancy is due to
the fact that the B/ ¥, values used in these
calculations are based on the assumption
that the line is infinitely long on both sides
of the discontinuity. Short circuits placed
close to the discontinuity and other steps in
close proximity will change the admittance
[5]. Exact calculation of B may be made by
Hahn’s method [7].

Three-step approximations (see Table I)
were developed, and the calculations yielded
no significant improvement. Unlike the
transverse resonance method, Yashkin's ap-
proximation technique gives more accurate
results as the number of steps is increased.
By the perturbation methods [8], it can be
shown that the deviation from the exact cut-
off wave number is reduced as the approxi-
mated boundaries become closer to the
actual.

Although not shown here, results for the
case b/s=0.50 were even better than for
b/s=0.25, (where b=5, for two steps, and
b="b; for three steps). Good results are ex-
pected to be obtained for guides with
b/s<0.25, provided that 4/s>0.1.

It is visualized that the transverse reso-
nance method may be used for calculating
the critical wavelengths of right-angled uni-
form trapezoids, and, many of the wave-
guide problems solved by Yashkin [2], [3].
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